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Toward Resilient Algorithms and Applications
Michael A. Heroux, Sandia National Laboratories

I. INTRODUCTION

Since the early days of supercomputing1, large-scale com-
puting platforms have been engineered to handle unreliability.
In contrast, algorithms and applications for large-scale systems
have generally assumed a fairly simplistic failure model: The
computer is a reliable digital machine, with consistent execu-
tion times and infrequent failures. If failure occurs, recovery
can be handled by checkpoint-restart (CPR): occasionally
storing a snapshot of application state and restarting from that
saved state.

Over the past decade, the high performance computing
community has become increasingly concerned that preserving
the reliable, digital machine model will become too costly or
infeasible [1], [2]. With the push toward exascale computing,
this concern has become even greater [3], and we must explore
other models and improve algorithms.

In this paper we discuss possibilities for developing new
algorithms that are resilient to hard and soft failures. However,
in order to reason about such algorithms, we first need
programming models that enable more sophisticated recovery
strategies than CPR.

II. THREE RESILIENCE-ENABLING PROGRAMMING
MODELS

Algorithm-based fault tolerance has certainly been studied,
going back many decades [4], and many algorithms have been
developed [5], [6], [7], [8], but none of these algorithms have
made it into broad practical use because we have no standard
programming model support. In order to develop effective re-
silient algorithms and applications, we first need programming
models that permit us to reason about failure and implement
recovery. Here we present three programming models that
we think have strong promise of being useful, ordering them
from easiest to hardest to implement in a production system.
Even though these models are not widely deployed today,
using them as abstractions for developing new algorithms will
provide motivation and guidance for development of both new
algorithms and the underlying system software and hardware.

A. Relaxed Bulk-synchronous Programming (RBSP)

One of the first impacts of reduced reliability is perfor-
mance variability. As low-level system failure rates increase,
error detection and correction happen more frequently in the
hardware and system software layers. These events preserve
the reliable digital machine model, but introduce variability
in execution time. Many scalable applications are designed

1The first Cray-1 (SN1) was delivered to Los Alamos National Laboratory
within SECDED memory. Errors were so frequent that SN2 was scrapped and
SN3 was delivered to NCAR with SECDED.

under the implicit assumption that equal work implies equal
execution time, so that if we balance the work of a parallel
application, we should scale well on a parallel computer, even
if we must synchronize across processors during execution.
Performance variability, when coupled with frequent collective
operations, leads to severe limitations in scalability, especially
as we go to a million or more processes.

With the introduction of MPI-3 [9], we now have asyn-
chronous neighborhood and global collectives, enabling a “re-
laxed” bulk-synchronous programming model (RBSP). Given
RBSP capabilities, we are now able to develop new algorithms
that can potentially hide latency.

B. Local Failure, Local Recovery (LFLR)

For parallel applications based on MPI, the current approach
to dealing with the loss of a single process is to kill all
remaining processes and restart the application. As we now
regularly run on hundreds of thousands to more than a million
processors, this approach is not feasible. Instead a local failure
should permit a local recovery.

One local-failure-local-recovery (LFLR) model permits the
user to store specific data persistently for each MPI process
and allows a recovery function to be registered, such that, if
a process fails, a new process is started and assigned to the
rank of the failed process, and the user’s recovery function is
called, giving access to the persistent data of the old process,
as well as the neighbors’ persistent data. Using LFLR, we can
develop new algorithms for many types of problems.

C. Selective Reliability Programming (SRP)

The third programming model we discuss is Selective Reli-
ability Programming (SRP), which gives the programmer the
ability to declare specific data and compute regions to be more
reliable that the “bulk” reliability of the underlying system (or
we can switch the default to be reliable and then selectively
be less reliable). By distinguishing between what needs to be
highly reliable or not, we can develop new algorithms that
store most data and do most computations with low reliability
while retaining the robustness of a fully reliable approach.

Although the costs of high reliability will impact the prac-
ticality of some approaches, the details of how reliability
is implemented is not fundamentally important to reasoning
about new algorithms. In some cases, even very expensive
approaches such as triple modular redundancy (TMR) can still
be much faster than a fully unreliable approach.

III. TOWARD RESILIENT ALGORITHMS

Resilient algorithms have long been a subject of research.
The above three programming models enable further research
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and drive co-development of the algorithms and computing
system features that are required to realize resilient applica-
tions. In this section we discuss some of the many possible
algorithms that can be developed under the above program-
ming models in order to provide resilience on future systems.

A. Latency-tolerant Algorithms

One of the most important and effective algorithm research
and development strategies we can explore now is latency
tolerance. Many of our scalable algorithms and applications
depend on collective operations that, when implemented in
a straightforward manner, lead to synchronous global collec-
tives. On emerging high end platforms, these collectives have
become severe performance limiters due to poor scaling of
collectives. The advent of asynchronous collectives gives us
new opportunities. The basic challenge we face as algorithm
developers in this situation is finding useful work to do while a
collective is completing. Recent work in pipelining algorithms,
for example the p(l)-GMRES algorithm [10], shows that la-
tency hiding by unrolling iterations in a Krylov solver can help
restore scalability. Similar approaches for many algorithms can
lead to relatively minor design changes that result in better
tolerance of latency and performance variability.

The impact of successfully redesigning algorithms to be
latency tolerant is that performance variability on existing
systems can be hidden. But even more importantly, if we
can tolerate performance variability due to error detection and
correction at the system software and hardware levels, system
designers can detect and correct more errors without impacting
application scalability, permitting us to extend the viability of
the reliable digital machine model.

B. Locally Restarted PDE Computations

Given the programming features described in Section II-B,
we have the potential to develop a broad collection of algo-
rithm with local recovery properties. Examples for differential
equations include:

• Explicit methods: As shown in [11], an explicit time-
stepping algorithm can be easily implemented to recover
locally, given the LFLR features.

• Implicit methods: This case is more interesting. The
challenge is to restore a local state that is equivalent up
to the truncation error of the PDE. Several interesting
approaches seem promising.

• Redundant storage of coarse model: In order to recover
state from a lost process, we could explore storing a
coarse model representation on neighboring processes
that could be used to boot-strap state recovery upon
failure.

C. Reliable Outer Iterations

Many algorithms can be cast in an outer-inner formulation.
For example, a fault-tolerant GMRES variant, as described
in [12], uses reliable computation and storage in the outer
iteration and an “unreliable” GMRES in the inner iteration.

The result is that most computation and data are in low-
reliability mode, leading to presumably cheaper computations.
Because the outer iterations are reliable, the solution returned
by the inner solve (if it comes back at all) can be analyzed
and used or discarded. Even if the inner solve answer is not
correct, it can still be used with some effect.

IV. CONCLUSIONS

Resilience is a critical requirement for future high-end com-
puting. In order to effectively develop resilient algorithms and
applications, we need robust and usable resilient computing
models. In this paper we have identified three specific models
that allow us to reason about and develop new algorithms.
RBSP is already possible with the introduction of MPI 3.0.
LFLR requires more support from the underlying system
layers, and requires some kind of support from programming
languages and libraries, but is also possible to realize in the
coming years. SRP is the most challenging model, but also
addresses one of the biggest challenges we face: silent errors.

Much of the focus of extreme-scale computing is on massive
concurrency, which is appropriate. However, without resilient
computing models we face a very real risk of application
failure rates that are too high to realize the benefits of future
systems.
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